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Abstract 
Space mission planning/scheduling is determining 
the set of spacecraft activities to meet mission 
objectives while respecting mission constraints. One 
important type of mission constraint is data 
management.  As the spacecraft acquires data via its 
scientific instruments, it must store the data onboard 
until it is able to downlink it to ground 
communications stations.  Because onboard storage 
and communication opportunities are often limited, 
this can be a challenging task. 
  This paper describes a formulation of the 
overlapping Memory Dumping Problem (oMDP), 
which is a generalization of the Mars Express 
Memory Dumping Problem (MEX-MDP). We first 
describe the abstract problem of onboard data 
management for spacecraft. Then we focus on a 
more specific version that allows data downlink to 
be controlled by using either the priority or the 
maximum dump duration of each buffer. 
  Previous solutions to the MDP, including Max 
Flow and Linear Programming (LP) formulations, 
assume that data generation and downlink events do 
not overlap. We present a solution, called 
DALLOC, that uses a fast heuristic-based method to 
solve the more general oMDP. We then compare it 
to Max Flow as well as other heuristic methods 
using actual mission data from the European Space 
Agency’s Rosetta mission. The ESA science 
operations team has been successfully using 
DALLOC to solve the oMDP in both strategic and 
tactical science planning. 

1 Introduction 
Spacecraft enable us to explore Earth, our solar system, and 
bodies beyond our galaxy to the furthest reaches of the 
universe. However, determining operations of these 
spacecraft (e.g. Mission planning and scheduling) is an 
extremely challenging part of these space missions.  While in 

the space community it is termed mission planning, from an 
Artificial Intelligence perspective the issue is more 
scheduling than planning as the challenge is to find 
appropriate times to schedule observations to achieve 
mission objectives that conform to the operations constraints 
of the spacecraft.  Space mission planning represents a fertile 
applications area for Artificial Intelligence-based planning 
and scheduling techniques with a wide range of deployed 
systems (for a survey see [Chien et al. 2012]).  
 One particular challenge for space mission planning is 
downlink planning.  In this problem the data acquired 
onboard from engineering telemetry and science observations 
is stored onboard.  This onboard storage is limited and is 
often pre-partitioned in an inflexible allocation.  Commonly, 
first a schedule is negotiated between the space mission and 
a ground communications station provider (or providers).  
Once this schedule has been determined, a prior version of a 
mission plan is adapted to ensure that all data is preserved - 
determining exactly which portions of onboard storage are 
downlinked when so as to enable the science and engineering 
data to be acquired and downlinked without loss of data.   
 Many variants of this downlink problem exist.  For 
example, there may be some uncertainty in the volume of 
acquired data, or deadlines for downlinking certain types of 
data, or buffers with dynamic priorities. We describe a 
particularly challenging downlink problem, the oMDP, in 
which data generation may occur over extremely long periods 
of time, overlapping with long downlink periods. We then 
describe the heuristic solution used by DALLOC, and 
compare it to two alternative heuristics and a Max Flow 
solution. 

2 The Overlapping Memory Dumping 
Problem (oMDP) 

Downlink scheduling is a sub-problem of the larger task of 
scheduling spacecraft activities. From a science 
planning/scheduling perspective, when constructing the 
schedule for the first time, the scheduler must decide on 
which observations to include, where they should occur, as 

Managing Spacecraft Memory Buffers with Overlapping Store and Dump 
Operations  

 
Gregg Rabideau1, Steve Chien1, Federico Nespoli2, Marc Costa3 

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 
{gregg.rabideau, steve.chien}@jpl.nasa.gov 

2European Space Agency, Noordwijk, Netherlands / Telespazio VEGA UK Ltd, Luton, UK. 
fnespoli@esa.int 

3European Space Astronomy Center (ESAC-ESA), Villanueva de la Cañada, Madrid, 28692, Spain 
marc.costa@esa.int 



 
 

well as which downlink commands to issue to best satisfy 
science requests (e.g. for Rosetta [Chien et al. 2015]). When 
constructing and evaluating these observation schedules, the 
impact of the observations on spacecraft resources, such as 
memory, must be managed. 

In this paper, we assume that a set of observations has been 
selected, and we focus on finding the best way to downlink 
data, thus freeing up memory used to store those 
observations. We focus on the scheduling of downlink 
commands only, assuming that the observation schedule 
cannot be changed. Fill rates from observations, and dump 
rates from downlinks, are all provided as inputs to the 
scheduler. As mentioned, this is a sub-problem of the 
strategic mission planning/scheduling process [Costa et al. 
2016] where observation scheduling and downlink 
scheduling are performed either simultaneously or 
interleaved [Ayucar et al 2016]. In addition, this type of 
downlink re-scheduling is often necessary during short-term, 
tactical planning when certain last-minute changes must be 
made (e.g. due to the loss of a downlink).  

Our problem was first discussed in [Rabideau et al. 2015] 
and is similar to the Mars Express Memory Dumping 
Problem (MEX-MDP) described in [Oddi and Policella 
2004]. While we discuss this problem in the context of the 
Rosetta mission [Rosetta 2015], most space missions handle 
downlink/data volume scheduling similarly. 

The general problem we solve is to specify an “empty” 
function that utilizes a fixed set of downlink periods to keep 
a set of onboard memory buffers well within their pre-defined 
limits. We formalize the data downlink problem as follows: 
 
Given:  
 
a time range T 
 
a set of buffers B = {b1, b2, ... bn} 
where each bj has  
  an initial volume state: init_volj 
  a final volume requirement: end_vol_reqj 
  a hard volume capacity: capacityj 
  a required margin: marginj 
 
a set of buffer fillers F = {f1, f2, ... fn} 
where each fi = <start_fi, end_fi, rate_fi> 
 
a set of downlinks D = {d1, d2, ... dn} 
where each di = <start_di, end_di, rate_di> 
 
Solve: 
 
∀di,∀bj: assign a function empty(bj,t)→rate s.t.:  
 
∀t ∈ [start_di, end_di]: Σ empty(bj,t) ≤ rate_di 
(cannot empty more than the downlink capacity) 
 
∀t ∈ T: volume(bj, t) ≤ capacityj - marginj  
(cannot exceed the buffer capacity minus margin) 
 

t = max(T): volume(bj, t) ≤ end_vol_reqj   
(cannot exceed the end volume requirement) 
 
∀bj: minimize max(peak_percent(bj)) 
(maximize robustness) 
 
In reality, as we will see, flight software on actual missions 
is not designed to allow for arbitrary downlink policies, so 
that our ability to control the empty(bj,t) function is not as 
flexible as desired. 
 Note that in our problem formulation, the downlinks and 
fill function are specified over all time.  Therefore, the data 
generation and downlink events can occur concurrently.  
Indeed, in Rosetta operations, downlinks cover greater than 
half of all time and on average seven data generation events 
are occurring at any point in time.  Thus Rosetta represents a 
case where prior problem formulation assumptions of non-
overlap between data production and downlink [Cesta et al. 
2007, Righini and Tresoldi 2010] most definitely do not hold. 

3 Controlling Data Downlink with Priority 
and/or Duration 

As with most spacecraft, Rosetta onboard data storage is 
partitioned into a set of buffers, called packet stores, for 
different types of science and engineering data that is 
accumulated from observations. Each instrument has a 
designated buffer with a specified hard upper volume limit 
that cannot be changed during routine scheduling.  

 The behavior of each downlink can be controlled in two 
ways: by setting priority or by limiting duration.  

• First, a priority can be assigned to each of the memory 
buffers, indicating a relative downlink order.  

• Second, downlink of a specific buffer can be halted at 
any time, effectively limiting the duration of data 
dump from that buffer. 

Priority and duration are the only decision variables 
available to the scheduler for controlling the “empty” 
function described earlier. Therefore, in this formulation, the 
control variables are: 

 
priorities P = {p1,1, p1,2, ... pi,j} for each di∈D and bj∈B 
durations U = {u1,1, u1,2, ... ui,j} for each di∈D and bj∈B 
 
To fully understand how these variables affect the “empty” 

function, we must examine the onboard software that controls 
the data downlink. We summarize the behavior of the Rosetta 
downlink software in the following set of rules. 

• Some of the buffers (used for high-priority 
engineering data) have fixed priorities and cannot be 
halted (they must dump first, and until they are 
empty).  

• A buffer remains “active” until a command is issued 
to stop it, after which no data will be downlinked 
regardless of priority. 

• When more than one active buffer has data waiting to 
be downlinked, the one with higher priority will be 
dumped first. 



 
 

• If more than one active buffer all have the same 
priority, data will be downlinked round-robin. 

• When a buffer becomes empty, downlink for that 
buffer will stop, allowing downlink to start on the next 
highest priority buffer. 

• Downlink from a buffer will be preempted when new 
data is added to an active, higher-priority buffer. 

Using these downlink rules, and the two control variables, 
the primary goal of the downlink scheduler is to prevent 
overflow on all buffers. The secondary goal of the scheduler 
is to make selections that respect a minimum margin and 
maximum carryover. And finally, it is preferred to have 
margins as large as possible, making the schedules more 
robust to uncertainties in data collection (e.g. compression 
ratios) and downlink availability.  

To achieve these goals, the scheduler must first model the 
behavior of the buffers so that volume and overflows can be 
accurately predicted. This is accomplished using the 
activities and timelines of the ASPEN scheduling system. 
With a model of how data is collected and downlinked, 
ASPEN generates a profile for each buffer that predicts the 
data volume at any point during the planning period. This 
profile can be used not only to predict overflows, but also 
provides information to the scheduler about when, and by 
how much, data will overflow. This information can then be 
used to make decisions about which priority values to assign 
at the start of each downlink, and when to stop the dump 
during each downlink. For example, after a given downlink, 
if there is one particular buffer that will overflow sooner, or 
exceed its limit by more than any other buffer, then that 
buffer should be given higher priority or more time to 
downlink. 

Because of the serial nature of the resulting dump 
schedules, using stop dump commands to allocate fixed 
downlink volumes is brittle to changes in those downlinks.  If 
downlink times change (to start later, end earlier, or with an 
interruption in the middle), stop dump commands that fall 
during deleted downlink periods will be ignored. Losing 
these commands will cause some buffers to dump much 
longer than needed, consuming time needed by other buffers. 

Originally the Rosetta mission used a fixed set of pre-
assigned buffer priorities and selected only the duration for 
each dump. To address the brittleness of this approach, the 
Rosetta mission switched to a priority-based method, which 
assigns different priorities to buffers and does not explicitly 
halt data dumps.  This method offers less control over the 
exact amount to downlink from each buffer, but is more 
robust to changes in the downlink schedule.  Potentially, both 
priority and duration could be used to control the dump 
schedule and increase control and robustness - this topic is 
left for future work. 

In this paper, we discuss a set of value selection heuristics 
for the overlapping Memory Dumping Problem (oMDP), and 
evaluate their performance on selecting either dump priorities 
or dump durations.  

4 Downlink Parameter Value Selection 
Heuristics 

In Rosetta operations, the DALLOC software tool is used to 
assign buffer priorities or durations based on the number of 
downlinks that exist before the first overflow of that buffer. 
Roughly speaking, this “downlink count” heuristic used by 
DALLOC will assign higher priorities or longer durations to 
buffers with earlier overflows. This ensures that more 
downlink time is given to the buffers with more urgent need. 
 For comparison purposes, we have implemented three 
alternative heuristics/methods for selecting either downlink 
duration or priority within the DALLOC framework. In all, 
we have: 

1. Downlink count 
2. Random 
3. Percent full 
4. Max flow 

In the “random” heuristic, values were independently 
selected at random to create a lower bound for comparison. 
When assigning priorities, one of the available priority levels 
is randomly selected. When assigning durations, a set of 
random numbers for the buffers is normalized across the total 
available downlink duration. 
 The “percent full” heuristic assigns priorities (or 
durations) by normalizing the peak volume percentages 
across the available priority values (or across the downlink 
duration).  In other words, the relative priority or duration 
assigned is proportional to the relative percent full for the 
peak of that buffer. 
 Finally, we compare our local heuristics against “max 
flow” which uses flow values that result from running the 
Edmond-Karp max-flow algorithm on the network 
constructed for the overlapping Memory Dumping Problem 
(oMDP). The MEX-MDP very closely matches the oMDP, 
allowing us to use a similarly constructed network. Here, 
“flow” represents data flowing into the buffers, out via 
downlinks, and carrying over to the next downlink (or end of 
the planning period). When the max-flow algorithm 
completes successfully, dump durations for each buffer can 
be extracted from the resulting graph. If selecting priorities, 
the “flow” value is converted to a priority by looking at it as 
a percent of the downlink available.  
  One distinction with Rosetta and the oMDP, however, is 
that buffer store and dump activities can occur over long 
periods of time (e.g. hours) and often overlap. In the max-
flow formulation, these activities must be modeled as 
instantaneous events. The resulting flow values, therefore, 
are not guaranteed to prevent overflow when the buffer 
profile is created.  
 In “max flow”, the entire schedule is evaluated to compute 
control variables (dump durations or priorities) for all 
downlinks at once. This can help ensure that selected values 
for one downlink do not adversely impact what can be done 
in a later downlink (i.e. prevents “painting into a corner”). 
However, the run-time for such a global evaluation can be 
significantly longer than local methods. All other heuristics 
use more local methods, selecting parameters for a downlink 



 
 

without much consideration for other downlinks. However, 
because we update buffer volumes after scheduling a 
downlink, this new information can be used when applying 
the heuristic to subsequent downlinks. While this lack of 
global information may lead to sub-optimal heuristics, it 
makes the computation very fast. Efficiency is important 
when downlink scheduling must be performed repeatedly 
during the construction of observation schedules, as done in 
the strategic planning phase. 
 All heuristics are compared in the empirical evaluation 
section of this paper. 

5 Schedule Robustness and Iterative Leveling 
As in [Oddi and Policella 2004], we are interested in 
producing schedules that are robust to unpredictable events 
that occur after committing to the schedule (e.g. after uplink). 
For comparison purposes, we use the same approximation to 
schedule robustness, which uses the maximum percent full 
that any buffer is predicted to be at any time. 
 In [Oddi and Policella 2004], max-flow is used to find a 
solution for all downlinks. This does not maximize the flow 
through any individual downlink, which can produce 
solutions that contain buffers that are near capacity at specific 
times. These solutions are considered brittle, and an 
“Iterative Leveling” technique is presented to improve 
robustness. Here, more robust solutions are generated by 
assigning an epsilon smaller capacity to the brittle buffer after 
each iteration.  
 We present a variant of iterative leveling that reduces all 
capacities to the same level instead of one-at-a-time, and 
iterates using binary search instead of epsilon reduction. 
First, we recognize that limiting one buffer to a lower percent 
does not help robustness if other buffers are allowed to 
increase above the previously identified maximum. For 
example, if one buffer is limited to 90%, all should be limited 
to 90%. Therefore, binary search can find a more robust 
solution by using an artificial capacity that is reduced when a 
solution is found, or increased when the solution results in 
overflows. 

6 Estimated Computational Complexity 
Figure 1 contains high-level pseudo-code for downlink 
scheduling using a global max-flow formulation, using local 
heuristics, and finally the outer loop that adds iterative 
leveling with binary search. We use the following variables 
to analyze the computational complexity of these downlink 
scheduling methods: 
 
D = downlinks  
B = buffers 
C = capacities  
F = fill rate changes 
 
First, we compute max-flow values using the Edmond-Karp 
implementation, which is O(EV2) where E is the number of 
edges and V is the number of nodes. In the MDP flow 
network, there are only a few nodes and edges for each buffer 

dump [Oddi and Policella 2004]. Therefore, E and V are each 
approximately equal to D*B, making the overall complexity 
of solving the MDP with max-flow O(D3B3). 
 For all but “random”, the local heuristics require an initial 
sort of the downlinks, and a propagation of volumes after 
each downlink assignment. Sorting the downlinks is 
O(DlgD). Because the downlinks are scheduled forward in 
time, recalculating volumes after the last scheduled downlink 
is simply proportional to the number of fill rate changes. The 
resulting complexity of scheduling using a local heuristic is 
O(DlgD + D*F).  
 For any of the heuristics, performing iterative leveling with 
binary search will add a constant multiplier. This is because 
our implementation works on an integer percentage between 
1 and 100, which will loop at most lg100 times (about 7 
times).  
 For the Rosetta mission, downlink planning is typically 
processed over a "Medium Term Plan" or MTP, which is 
generally 4 weeks in length.  For Rosetta there are 16 buffers, 
and for one MTP, there are typically 30+ downlinks and 
hundreds of fill rate changes.  

7 Empirical Evaluation 
We have conducted an empirical evaluation of the scheduling 
algorithm using the four previously mentioned heuristics for 
assigning dump durations or priorities. Performance of the 

scheduleWithMaxFlow(D, B, C, F) 
 M = computeMaxFlow(D, B, C, F) 
 for each d in D 
  for each b in B 
   assignValue(d, b, M[d][b]) 
 
scheduleWithHeuristic(D, B, C, F) 
 sort(D) 
 for each d in D 
  for each b in B 
   c = C[d][b] 
   heuristicallyAssignValue(d, b, c) 
  for each f in F 
   recalculateVolumeAt(f) 
 
iterativeLeveling(D, B, C, F) 
 Cdelta = 100 
 Cprev = 0 
 while(Cdelta > 1) 
  Cdelta = abs((C – Cprev) / 2) 
  Cprev = C 
  if(USE_MAX_FLOW) 
   r = scheduleWithMaxFlow(D, B, C, F) 
  else 

r = scheduleWithHeuristic(D, B, C, F) 
  if(r) 
   C -= Cdelta 
  else 
   C += Cdelta 
 
Figure 1: Scheduling with max-flow, with local heu-

ristics, and iterative leveling 
 



 
 

heuristics based on run-time and schedule robustness. We use 
data from four medium-term planning (MTP) periods during 
the comet escort phase of the Rosetta mission. The data 
collected during each MTP is roughly the same as the 
downlink available. This is because the fill rate data we use 
was taken from an archive of the tactical planning process, 
where the strategic selection of observations has already 
completed.  In addition, the data collected from these 
observations is typically about 2x to 3x the total capacity of 
all buffers. 
 First, in order to evaluate the performance over a range of 
constrainedness, we varied the downlink rates from 80% to 
120% of the true rate used in operations. Then, we look at 
how each heuristic compares when selecting either dump 
duration (Figure 2) or dump priority (Figure 3). 
 When selecting dump duration, the relative performance of 
the heuristics does not change as the problem becomes more 
or less constrained. As expected, selecting random durations 
results in schedules that are the most brittle (resulting 
volumes were greater than 200% and therefore do not appear 
on the graph in Figure 2). Surprisingly, using the max-flow 

values does not produce the most robust solutions. The 
“downlink count” heuristic, which selects duration based on 
the number of downlinks before the first overflow, 
consistency outperforms max-flow. 
 Next we look at the performance of heuristically assigning 
buffer priorities without changing dump durations (Figure 3). 
Recall that this will simply control the order in which buffers 
are downlinked. Because max-flow solutions contain volume 
assignments, we first convert flow values to priorities based 
on the flow volume as a percent of capacity. Using the actual 
downlink rate (100%), when fill and downlink volumes are 
about the same, max-flow outperforms all other methods by 
at least 10%. But when over- (<100%) or under-constrained 
(>100%), we see that the “downlink count” heuristic 
outperforms max-flow by about 10%. 
 Results from max-flow were surprising since we had 
expected a global solution to consistently outperform any of 
the local heuristics. First, we must consider that max-flow 
was not designed to assign priorities, which could explain the 
results in Figure 3. For under-constrained problems, one 
possibility is that max-flow is relying more heavily on 
iterative leveling to keep the peaks low. For over-constrained 
problems, max-flow is more likely to fail to find a solution, 
which could contribute to the drop in robustness. In all cases, 
max-flow models the filling and downlinking events as 
instantaneous, while in reality, these activities have durations 
and even overlap. This modeling inaccuracy may be 
producing suboptimal solutions. 
 In addition to comparing the robustness of these various 
methods, we are also interested in run-times in order to 
determine whether the benefits outweigh the costs. Table 1 
reports the run times (real CPU time in seconds) of max-flow 
and each of the local heuristics, with and without iterative 
leveling. Table 2 reports the robustness (max peak volume 
percent) obtained, averaged from both priority and duration 
assignment, using actual (100%) downlink rates. As 

 

 

	 No	Leveling	 Leveling	
Downlink	count	 14.6	 92.6	
Max	flow	 337.5	 2190.0	
Percent	full	 11.0	 77.3	
Random	 11.1	 76.8	

 
Table 1: Average run-times (seconds) 

 

	 No	Leveling	 Leveling	
Downlink	count	 64.2%	 55.6%	
Max	flow	 85.4%	 57.9%	
Percent	full	 76.4%	 77.1%	
Random	 162.9%	 175.9%	

 
Table 2: Average robustness for the actual (100%) 

downlink rate 



 
 

expected, compared to using local heuristics, the cost of 
running max-flow is high (roughly 20x slower). Moreover, 
solutions are not much better, and in some cases worse than 
those produced by the best local heuristics. Next, we consider 
the cost-benefit tradeoff of using iterative leveling. As shown 
in the complexity analysis, the cost is a multiplier of lg100, 
or about 6.6x. This is consistent with the observed data in 
Table 1. In Table 2, we see that iterative leveling, as expected, 
is more important for max-flow where no peak minimization 
is attempted in a single iteration. 
 In our experience, the best combination is the use of 
iterative leveling with a local heuristic. This allows the tool 
to be more responsive during tactical planning, but also 
enables its use as part of the strategic planning process, where 
it may need to be run hundreds of times to generate a single 
MTP schedule. 

8 Discussion 
The downlink scheduling algorithms described in this paper 
were originally deployed as part of the Rosetta early science 
planning operations tool that also scheduled science activities 
[Chien et al. 2015].  Later in operations the data downlink 
scheduling software was modularized and extracted to also 
be used in mid to late tactical science planning.  It is this 
separated scheduling software and associated algorithms that 
we describe in this paper.  In some form or other this 
downlink scheduling software has been in use to schedule 
over 18 Medium Term Plans (each ~1 month of Rosetta 
Orbiter operations). 
 Automated downlink planning is in operational use for the 
Mars Express mission [Cesta et al. 2007].  However, they 
model observations and downlinks as non-overlapping (or 
equivalently instantaneous) data producers and consumers.   
In many space missions, including Rosetta, this assumption 
does not hold. Their robustness metric is similar to our 
margin requirement. 
 Onboard downlink management [Pralet et al. 2014] is 
proposed in order to address challenges of uncertainty in data 
generation (due to the uncertainty of effectiveness of content-
dependent compression schemes).  This formulation of the 
problem adds even several more complexities such as 
antenna pointing, multiple channels, data latency, and 
encoding table time.  Again for a typical earth imager, the 
data production is effectively instantaneous, in contrast to the 
Rosetta problem. 
 Most other deployed automated planners must also solve 
some version of the downlink planning/scheduling problem 
however in most cases it is not the focus of the overall 
scheduling problem (e.g. Hubble Space Telescope [Johnston 
and Miller 1994], Earth Observing One [Chien et al. 2005, 
2010] or Orbital Express [Knight et al. 2013]). 
 The Philae Lander for the Rosetta Mission has a science 
scheduling with downlink problem [Simonin et al. 2012].  
They use ILOG-scheduler in a system called MOST to solve 
for most of the scheduling constraints except data 
management.  They examine the problem of scheduling 
science experiments with fixed science experiment storage 
and downlink buffer storage but with a fixed priority 

downlink strategy.  This problem is analogous to the full 
Rosetta scheduling problems [Chien et al. 2015]. However, 
one key difference is that MOST does not have the ability to 
re-program buffer priorities dynamically as we have on the 
Rosetta Orbiter (and described here in this paper). 

9 Summary 
We have described the downlink scheduling problem, a well 
defined subproblem within the overall space mission 
planning and scheduling problem.  While this problem can be 
and often is solved in isolation, it is also addressable 
concurrently with the overall scheduling problem. 
  We then described the Rosetta downlink scheduling 
problem as a specific instantiation of the general downlink 
scheduling problem with overlapping data creation and 
downlinks. We describe heuristic solutions to this new 
problem that are in operational use for ESA’s Rosetta mission 
and show that they outperform prior max-flow methods that 
do not handle overlapping effects on Rosetta mission data. 
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